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Probabilistic logic metric and its
application to approximate reasoning

Li Zhou2, Jialu Zhang3, 4

Abstract. The concepts of Λ-probabilistic truth degree and Λ-uncertainty degree are intro-
duced in the paper. The conclusion that Λ-probabilistic truth degree satisfies Kolmogorov axioms
is reached by discussing some of their properties. The paper proves that the Λ-uncertainty degree
of conclusion is less than or equal to the sum of the product of Λ-uncertainty degree of each premise
and its essentialness degree in a formal inference. The Λ-similarity degree and probabilistic logic
pseudo-metric between formulas are introduced by using the Λ-uncertainty degree of formulas, and
it indicates that there are not isolated points in the probabilistic logic pseudo-metric space under
some conditions. As an application, proposals of two different approximate reasoning models in
the probabilistic logic pseudo-metric space are raised as well as some examples to illustrate the
practical application of these approximate reasoning models.

Key words. Probabilistic valuation, Λ-probabilistic degree, Λ-uncertainty, probabilistic logic
pseudo-metric, approximate reasoning.

1. Introduction

In dealing with combination of logic deduction with numerical computing, prob-
abilistic methods of logic deduction is extensively used. Because it realized to be
the exact means featuring human thinking of which logic deduction and numerical
estimation are naturally mixed [1–5]. Guojun Wang devoted to the introduction of
grades within the framework of propositional logic systems and then establishing a
kind of quantitative logic semantically. Truth degree plays a key role in studying
quantitative logic. Many scholars focus on studying this concept and have proposed
a variety of different truth degrees of propositions [6, 7]. Reference [8] introduces
the concept of D-random truth degree, but the concept of D-random truth degree
also has not reflected fundamentally the idea that the atomic formula takes ran-
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domly value in its value domain. In approximate reasoning, we should consider fully
the randomness of every atomic formula taking value in value domain and apply
random mathematical method to study quantitative logic, and then establish the
random quantitative logic.

The rest of this paper is organized as follows. Section 2 introduces the concept
of probabilistic valuation of proposition logic. Section 3 introduces the probabilis-
tic truth degree based on the partial probabilistic valuation set and discusses its
properties. Section 4 discusses the probabilistic truth degree based on finite proba-
bility space. Section 5 introduces the probabilistic truth degree based on the partial
probabilistic valuation set and establishes probabilistic logic pseudo-metric between
formulas. Section 6 presents two diverse approximate reasoning models and gives
some reasoning instance. Section 7 concludes the study.

2. Probability semantic of propositional logic

Let S = {q1, q2, · · · }, ¬ and → be two logic connectives and F (S) be the free
algebra of type (¬,→) generated by S. The element in S is called atomic formula and
the element in F (S) is called formula. Suppose that Ω is a non-empty set and A is a
σ-algebra on Ω. For any α, β ∈ A, if we denote ¬α = −α, α→ β = (Ω−α)∪β, then
(Ω, A) is also an algebra of type (¬,→). Further, we assume that P is a probability
measure on A, i.e., (Ω, A, P ) is a probability space, in this case, a subset of Ω is
also called an event.

Definition 2.1
(1) Let Ω be a non-empty set, (Ω,A) be a σ-algebra and P is a probability

measure on A. The mapping v: F (S) → A is called an event valuation of F (S) if
v is a (¬,→)-type algebra homeomorphism, i.e., ∀A, B ∈ F (S), v¬A) = ¬v(A) and
v(A → B) = v(A) → v(B). The probability P (v(A)), which can be viewed as a
probabilistic truth value of A, under the event valuation v satisfies the relations

P (v(¬A)) = 1− P (v(A))

and
P (v(A→ B)) = P (v(A)→ v(B)) = P ((Ω − v(A)) ∪ v(B) =

= P ((Ω − v(A)) ∪ (v(A) ∩ v(B)) = 1− P (v(A)) + P (v(A) ∩ v(B)) .

The event valuation with probability truth value of formulas is called probabilistic
valuation of formulas and the set of all probability valuations of F (S) is denoted by
ΣP.

(2) Let A ∈ F (S). If ∀v ∈ ΣP P (v(A)) = 1, then A is called the probabilistic
tautology. If ∀v ∈ ΣP, P (v(A)) = 0, then A is called the probabilistic contradiction.

Obviously, for any probabilistic valuation v, we have

P (v(A ∨B)) = P (v(A) ∪ v(B))
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and
P (v(A ∧B)) = P (v(A) ∩ v(B)) ,

where v is determined uniquely by its restriction v|S to S because F (S) is the free
algebra generated by S.

Definition 2.2
Let A, B ∈ F (S). If A → B is a probabilistic tautology, then we call A prob-

ability logic implies B (for short, A implies B), denoted it by A ⇒ B. If A ⇒ B
and B ⇒ A, then we call A and B probability logic equivalence (for short, A and B
equivalence), denoting it as A⇔ B.

Proposition 2.3
(1) ∀v ∈ ΣP, 0 ≤ P (v(A)) ≤ 1 .
(2) If A⇒ B, then

∀v ∈ ΣP P (v(A→ B)) = 1− P (v(A)) + P (v(A) ∩ v(B)) = 1 ,

i.e.
P (v(A)) = P (v(A) ∩ v(B)) .

Hence,
P (v(A)) = P (v(A) ∩ v(B)) ≤ P (v(B)) ,

P (v(A) ∩ v(B)) = P (v(A)) = min{P (v(A)), P (v(B))} ,

P (v(A) ∪ v(B)) = P (v(B)) = max{P (v(A)), P (v(B))} .

(3) If A⇔ B, then ∀v ∈ ΣP P (v(A)) = P (v(B)) .
(4) If A and B are logically incompatible, i.e., A ∧B is a contradiction, then

P (v(A ∨B)) = P (v(A) ∪ P (v(B)) = P (v(A)) + P (v(B))− P (v(A)) ∩ P (v(B)) =

= P (v(A)) + P (v(B))− P (v(A)) ∧ P (v(B)) = P (v(A)) + P (v(B)) .

(5) If ∀v ∈ ΣP, then v(A) and v(B) are independent and we call them indepen-
dent. When v(A) and v(B) are independent, we have

P (v(A ∧B)) = P (v(A) ∩ v(B)) = P (v(A))× P (v(B))

and

P (v(A ∨B)) = P (v(A) ∪ P (v(B)) = P (v(A)) + P (v(B))− P (v(A))× P (v(B)).

Proposition 2.3 shows that P (v(·)) satisfies Kolmogorov axioms [9], hence P (v(·))
can be viewed as a probability measure on F (S).
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3. Probabilistic truth degree of logic formulas

We have already known every probabilistic valuation v: F (S) → Γ is uniquely
determined by its restriction v|S to S, in other words, every mapping v: S → Γ can
uniquely be extended to a probabilistic valuation. If v(qk) = vk, k = 1, 2, · · · , then
T (v) = (v1, v2, · · · ) ∈

∏∞
k=1 Γk is called a state-description of S, where Γk = Γ and∏∞

k=1 Γk is not viewed as the usual infinite product of σ-algebra but is viewed as a
direct product of sets Γk, k = 1, 2, · · · , and it is also denoted by Γ∞. Conversely,
if (v1, v2, · · · ∈

∏∞
k=1 Γk, then there exists a unique probabilistic valuation v ∈ ΣP

such that v(qk) = vk, k = 1, 2, · · · . Hence φ : ΣP →
∏∞
k=1 Γk and φ(v) = T (v) is a

bijection.
Suppose that Γ ∗ is a σ-algebra on Γ∞ and µ∗ is a probability measure on Γ ∗.

The measure µ∗ on Γ ∗ can be transferred into µ on ΣP by means of ϕ, i.e., for any
Σ ⊆ ΣP, if ϕ(Σ) ∈ Γ ∗, then µ(Σ = µ∗(ϕ(Σ)), and µ is called the induced probability
measure by µ∗. If we denote Γ = {Σ|Σ ⊆ ΣP, ϕΣ ∈ Γ ∗}, then (ΣP, Γ, µ) is a
probability measure, which it is also called the induced probability measure space
by Γ∞, (Γ ∗, µ∗).

According to the view in [5, 6], a formula A determines uniquely a function on
probabilistic valuation set ΣP:

A : ΣP → [0, 1], A(v) = µ(v(A)) .

Definition 3.1
Suppose that A∗ is a σ− algebra on Γ∞, µ∗ is a probability measure on Γ ∗ and

(ΣP, Γ, µ) is the induced probability measure space by (Γ∞, Γ ∗, µ∗). Let A ∈ F (S),
Λ ⊆ ΣP be a µ−measurable set, and define

τΛ(A) =

∫
Λ

A(v) dµ =

∫
ΣP

A(v)χΛ(v) dµ .

Then τΛ(A) is called the Λ− probabilistic truth degree of A. If Λ = ΣP, then
τΣP

(A), briefly τ(A), is called a probabilistic truth degree of A.

Remark 3.2
Let A = A(q1, q2, . . . , qt) be a formula built up from atomic formulas with

q1, q2, . . . , qt. Obviously, formula A determines a function with t variables

Ā(t) : Γ t → [0, 1]

and

Ā(v1, v2, . . . , vt) = µ(ϕ−1((v1, v2, . . . , vt)×
∞∏

k=t+1

Γk)(A)) = µ(v(A)) ,
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where Γ t =
∏t
k=1 Γk. Let

Ct = {E|E ⊆ Γ t, E ×
∞∏

k=t+1

Γk ∈ Γ ∗} .

Then Ct is a σ−algebra on Γ t.
Hence if we define µ∗(t) : Γ t → [0, 1]

µ∗(t)(E) = µ∗(E ×
∞∏

k=t+1

Γk), E ∈ C(t) ,

then µ∗(t) is a probability measure on Γ t, called the restriction of µ∗ on Γ t. Then
we can obtain the following computing equation of probabilistic truth degree

τΛ(A) =

∫
ϕ(Λ)

A
(t)

(·) dµ∗(t).

Conversely, let P be a probability measure on Γ t and µm the probability measure
on Γm = Γ (m = t+1, t+2, · · · ). Because Γ∞ can also be viewed as the infinite prod-
uct space of Γ t, Γt+1, Γt+2, · · · , then P, µt+1, µt+2, · · · determine a unique product
probability measure µon Γ∞. It is easy to check that µ∗(t) = P .

For a formula A = A(q1, q2, · · · qt) with t atomic formulas, t variables function
A(v1, v2, · · · , vt) can also be viewed as t+i variables function: A

(t+i)
(v1, · · · , vt, vt+1,

· · · vt+i) = A(v1, v2, · · · vt).. Hence probabilistic truth degree have the following
integral form invariant property.

Proposition 3.3
Let A = A(q1, q2, · · · qt) be a formula with t atomic formulas. Then

τΛ(A) =

∫
ϕ(Λ)

A
(t)

(·) dµ∗(t) =

∫
ϕ(Λ)×Γ i

A
(t+i)

(·) dµ∗(t+ i) .

Proposition 3.4
Probabilistic truth degree have the following properties:

1. 0 ≤ τΛ(A) ≤ 1.

2. If A⇔ B, then τΛ(A) = τΛ(B).

3. If A is a probabilistic tautology (contradiction), then τΛ(A) = 1(τΛ(A) = 0).

4. τΛ(¬A) = 1− τΛ(A).

5. τΛ(¬A) = 1− τΛ(A).

6. If A→ B is a probabilistic tautology, then τΛ(A) ≤ τΛ(B).
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Definition 3.5
We call UΛ(A) = 1−τΛ(A) =

∫
Λ

(1−A(v)) dµ the Λ-uncertainty degree of formula
A. If Λ = ΣP , then UΣP

(A), briefly U(A), is called the uncertainty degree of A.

Definition 3.6
Let {A1, A2, · · ·An} ⊆ F (S), A∗ ∈ F (S). If {A1, A2, · · ·An} 7→ A∗, then

“{A1, A2, · · ·An} ⇒ A∗” is called an effective reasoning, A1, A2, · · ·Anare called
premises of reasoning and A∗ is called a conclusion of reasoning. For an effec-
tive reasoning “{A1, A2, · · ·An} ⇒ A∗”, some premises in it may be necessary, i.e.,
conclusion A∗ may be the conclusion of a proper subset {Ai1, · · ·Aik}(k < n) of
{A1, A2, · · ·An}. In order to distinguish the necessity of a premise in an effective
reasoning, Nillson introduced a concept of essentialness degree of premise [3].

Definition 3.7
Let {A1, A2, · · ·An} ⇒ A∗ be an effective reasoning and F = {A1, A2, · · ·An}.

For a subset E of F , if conclusion A∗ is not induced from premises F − E then
E is called an essential premise. The number of minimum premises set, which the
number of premise is minimal in all essential premises set containing premise Ai, is
denoted by δ(Ai). We call e(Ai) = 1/δ(Ai) an essentialness degree of Ai. If there is
not a minimum premises set containing premise Ai, then e(Ai) = 0.

Theorem 3.8
Let {A1, A2, · · ·An} ⇒ A∗ be an effective reasoning. Then the uncertainty degree

of conclusion is less than or equal to the sum of the product of uncertainty degree
of every premise and its essentialness degree.

Proof
Denote Ψ = {A1, A2, · · ·An}. By the integral form invariant properties of proba-

bilistic truth degree, we may assume that the all formulas in Ψ have t atomic formu-
las. Let t and the value state be T (v). Note that for every probabilistic valuation
v, µ(v(·)) can be viewed as a probability on Ψ , the uncertainty degree of formulas
A1, A2, · · ·An, A∗ are 1 − µ(v(A1)), 1 − µ(v(A2)), · · · , 1 − µ(v(An)), 1 − µ(v(A∗)),
respectively. By probability logic fundamental theorem [3] we have

1− µ(v(A∗)) ≤ e(A1)(1− µ(v(A1))) + e(A2)(1− µ(v(A2))) · · · e(An)(1− µ(v(An))) .

Then∫
Λ

(1−A∗(v)) dµ ≤
∫

Λ

e(A1)(1−A1(v)n) dµ+

∫
Λ

e(A2)(1−A2(v)) dµ+

+ · · ·+
∫

Λ

e(An)(1−An(v)) dµ = e(A1)

∫
Λ

(1−A1(v)n) dµ+

+ e(A2(v)

∫
Λ

(1−A2(v)) dµ+ · · ·+ e(An)

∫
Λ

(1−An(v)) dµ .
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Hence

UΛ(A∗) ≤ e(A1)UΛ(A1) + e(A2(v))UΛ(A2) + · · ·+ e(An)UΛ(An) .

4. Probabilistic truth degree based on finite probability space

Let Ω = {Ω1, Ω2, · · · , Ωn} and Γ (σ-algebra) the set of all subsets of Ω. Sup-
pose that A = A(q1, q2, · · · qt) and Auto(A) = {q1, q2, · · · qt} is the set of all atomic
formulas in A. Then there are 2nm different probabilistic valuation on A, i.e.,
|ΣP | = 2nm. For v ∈ ΣP denote TA(v) = (v(q1), · · · v(qn)) ∈ Γn, the set of all
value states is denoted by TA = {TA(v1), TA(v2), · · · , TA(vl)}(l = 2nm). Suppose
that Pn is a normal probability distribution on TA, i.e., 0 < Pn(TA(vi)) < 1(i =

1, 2, · · · l),
∑l
i=1 Pn(TA(vi)) = 1. Hence we obtain

τΛ(A) =

∫
ϕ(Λ)

A
(t)

(·) dµ∗(t) =

l∑
i=1

P (vi(A))Pn(TA(vi)) .

In particular, if Pn is an uniform probability distribution on TA, i.e., Pn(T (vi)) =
1/2nm we also obtain

τu =
1

2nm

2nm∑
i=1

P (viA)) .

In the following we discuss in detail the properties of τu(A). Obviously, we have
0 ≤ τu(A) ≤ 1 for any A ∈ F (S).

Proposition 4.2
Suppose that there is not common atomic formulas in A and B. Then τu(A∧B) =

τu(A)× τu(B).
Proof
It is no hurt to assume that A = A(q1, q2, · · · qn1),B = B(qn1+1, · · · , qn1+n2). Let

SA = {q1, · · · , qn1
}, SB = {qn1+1, · · · qn1+n2

}. Then each probabilistic valuation vof
A ∧B determines corresponding a probabilistic valuation v|SA

of A and v|SB
of B.

Hence
τu(A ∧B) =

1

2m(n1+n2)

∑
v

[P (v(A) ∩ v(B))] =

=
1

2m(n1+n2)

∑
v|SA

[P (v |SA
(A)) ·

∑
v|SB

P (v |SB
(B))] = τu(A) · τu(B) .

Corollary 4.3
τu(q1 ∧ q2 ∧ · · · ∧ qn) = 1

2n .
Proof
Let Ω = {Ω1, Ω2, · · ·Ωm}. Then τu(q1) = 1

2m

∑
v P (v(q1)). By computing we
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have
∑
v P [v(q1)] = 2m−1. Hence

τu(q1) =
1

2m
× 2m−1 =

1

2
.

Analogously,

τu(q2) = · · · = τu(qn) =
1

2m
× 2m−1 =

1

2
.

It follows from Proposition 4.2 that τu(q1 ∧ q2 ∧ · · · ∧ qn) = 1
2n .

Theorem 4.4
The set {τu(A) |A ∈ F (S)}has no isolated points in [0,1].
Proof
Let A = A(q1, q2, · · · qn) ∈ F (S), ε > 0. In the following we prove that there

exists a formula B ∈ F (S) such that |τu(A)− τu(B)| < ε and τu(A) 6= τu(B).

1. τu(A) = 0. If we take k such that 1/2k < ε, then by Proposition 4.3 there is
B(k) = qn+1 ∧ · · · ∧ qn+k, such that τu(B(k)) = 1/2k. In this case, if we take
B = B(k), then |τu(A)− τu(B)| = τu(B(k)) = 1/2k < ε.

2. τu(A) = 1. Let B = ¬B(k), then τu(B) = 1 − τu(B(k)) 6= τu(A) and
|τu(A)− τu(B)| = 1/2k < ε.

3. 0 < τu(A) < 1. Let B = A ∨ B(k), then it follows from Propositions 3.4 and
4.2 that τu(B) = τu(A)+τu(B(k))−τu(A∧B(k)) = τu(A)+τu(B(k))−τu(A) ·
τu(B(k)). Hence τu(A) 6= τu(B) and

|τu(A)− τu(B)| = τu(B(k))(1− τu(A)) < τu(B(k)) =
1

2k
< ε .

5. Probabilistic logic pseudo-metric between formulas

In order to meet the demands of approximate reasoning in practical applica-
tion, as well as to the integrity of the theory, in the next section we introduce
Λ-probabilistic truth degree based on the partial probabilistic valuation set Λ, and
establish the Λ-pseudometric on the formulas set F (S).

Definition 5.1.
Let A,B ∈ F (S) and denote

ξΛ(A,B) = τΛ((A→ B) ∧ (B → A)) .

Then ξΛ(A,B) is called the Λ-resemblance degree between A and B. If ξΛ(A,B) = 1,
then A and B are called Λ-resemblance. In particular, when Λ = ΣP , the ξΣP

(A,B)
is called the P-resemblance degree between A and B.

Theorem 5.2.
Let A,B ∈ F (S). Then
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1. ξΛ(A,B) = ξΛ(B,A).

2. If A and B are logically equivalence, then A and B are Λ-resemblance.

Theorem 5.3.
Let A,B,C ∈ F (S). Denote ρΛ(A,B) = 1−ξΛ(A,B) = UΛ((A→ B)∧(B → A)).

Then

(1). ρΛ(A,B) = 0.

(2). ρΛ(A,C) ≤ ρΛ(A,B) + ρΛ(B,C).

Proof
The proof of (1) is easy, in the following we prove (2). It is easy to check that

{(A→ B) ∧ (B → A), (B → C) ∧ (C → B)} ⇒ (A→ C) ∧ (C → A)

is an effective reasoning, and e((A→ B)∧(B → A)) = 1, e((B → C)∧(C → B)) = 1.
Hence by Theorem 3.8 we know that UΛ((A→ C)∧(C → A)) ≤ UΛ((A→ B)∧(B →
A)) + UΛ((B → C) ∧ (C → B)). Therefore, ρΛ(A,C) ≤ ρΛ(A,B) + ρΛ(B,C).

Remark 5.4.
By Theorem 5.3, we know that ρΛ(A,B) is a pseudo-metric on F (S) and call

(F (S), ρΛ(A,B)) a probabilistic logic pseudo-metric space. The probabilistic logic
pseudo-metric with respective to probabilistic truth degree τ0 and τu are denoted
by ρu and ρ0 respectively.

Theorem 5.5.
Suppose that τA satisfies the condition: τΛ(q1 ∧ q2 ∧ · · · ∧ qt)→ 0(t→∞). Then

there is no isolated points in probabilistic logic pseudo-metric space (F (S), ρΛ).

Proof
Let A = A(q1, q2, · · · qn) and ε > 0. In the following we prove that there exists

B ∈ F (S), B 6= A such that ρΛ(A,B) < ε. Since τΛ(q1 ∧ q2 ∧ · · · ∧ qt)→ 0(t→∞),
we know that there exists a positive number k such that τΛ(qn+1 ∧ · · · ∧ qn+k) < ε.
Taking C = ¬(qn+1 ∧ · · · ∧ qn+k) and B = A ∧ C, then (A → B) ∧ (B → A) and
A→ C are logically equivalence. Hence

ρΛ(A,B) = UΛ((A→ B) ∧ (B → A)) = UΛ(A→ C) = 1− τΛ(A→ C)

and
≤ 1− τΛ(C) = τΛ(qn+1 ∧ · · · ∧ qn+k) < ε .

Obviously, B 6= A. It follows that B is the demanded formula. This prove that
there are no isolated points in probabilistic logic pseudo-metric space (F (S), ρΛ).
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6. Some approximate reasoning models in (F (S), ρΛ).

Now that the probabilistic logic pseudo-metric ρΛ has been introduced in F (S),
we are ready to provide two kind of approximate reasoning models in F (S).

1. If inf{ρΛ(A,B) |B ∈ D(Ψ)} < ε, then we say A is a I-type conclusion of Ψ with
error less than ε with respect to Λ, denoted it by A ∈ D(1)

ε,Λ(Ψ). In particular,
when Ψ = ∅ and Λ = ΣP , we say that A is a I-type theorem with error less
than ε, denoted it by (1, ε) 7→P A.

2. If inf{H(D(Ψ), D(Ξ))|Ξ |− A} < ε where H is the Hausdorff distance on
2F (S) − {∅}, then we say A is a II-type conclusion of Ψ with error less than ε
with respect to Λ, denoted it by A ∈ D(2)

ε,Λ(Ψ). In particular, when Ψ = ∅ and
Λ = ΣP , we say that A is a II-type theorem with error less than ε, denoted it
by (2, ε) 7→P A.

Theorem 6.2.
Let Ψ ⊂ F (S), A ∈ F (S), ε > 0. Then A ∈ D(1)

ε,Λ(Ψ) if and only if

sup{τΛ(B → A) |B ∈ D(Ψ)} > 1− ε .

Proof

Suppose that A ∈ D(1)
ε,Λ(Ψ). Then there is B0 ∈ D(Ψ) such that ρΛ(A,B0) < ε.

Since

ρΛ(A,B0) = 1− ξΛ(A,B0) = 1− τΛ((A→ B0) ∧ (B0 → A)) ≥ 1− τΛ(B0 → A) ,

we have that

1− sup{τΛ(B → A) |B ∈ D(Ψ)} ≤ 1− τΛ(B0 → A) < ε .

It follows that sup{τΛ(B → A) |B ∈ D(Ψ)} > 1− ε.
Conversely, let sup{τΛ(B → A) |B ∈ D(Ψ)} > 1 − ε. Then inf{1 − τΛ(B →

A) |B ∈ D(Ψ)} < ε. It is easy to check that (A→ A∨B)∧ (A∨B → A) ∼ B → A.
Hence

ρΛ(A,A ∨B) = 1− ξΛ(A,A ∨B) = 1− τΛ((A→ A ∨B) ∧ (A ∨B → A)) =

= 1− τΛ(B → A) .

This means that inf{ρΛ(A,A ∨B) |B ∈ D(Ψ)} < ε. Thus there exists B ∈ D(Ψ)
such that ρΛ(A,A ∨ B) < ε. Since B ∈ D(Ψ), we have that B ∨ A ∈ D(Ψ). This
shows that inf{ρΛ(A,B) |B ∈ D(Ψ)} ≤ ρΛ(A,A ∨B) < ε. Therefore A ∈ D(1)

ε,Λ(Ψ).

Theorem 6.3
Let Ψ ⊂ F (S), A ∈ F (S), ε > 0. If A ∈ D(2)

ε,Λ(Ψ). then A ∈ D(??)
ε,Λ (Ψ).

Proof
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Let A ∈ D(2)
ε,Λ(Ψ). Then there exists Ξ ⊂ F (S) such that H(D(Ψ), D(Ξ)) < ε and

Ξ |− A. It follows from Ξ |− A that B ∈ D(Ξ). Hence

inf{ρΛ(A,B)|B ∈ D(Ψ)} = ρΛ(A,D(Ψ)) ≤ H(D(Ψ), D(Ξ)) < ε .

Therefore A ∈ D(1)
ε,Λ(Ψ).

Example 6.4
Suppose that Ω = {a, b, c}, P (a) = 1

2 , P (b) = 1
4 , P (c) = 1

4 , Γ = 2Ω be the power
set of Ω. Let Ψ = {q1∨q2, q1∨q3}, A = q1. Then Ψ∪{A} has 29 = 512 different value
states TΨ∪{A} = {T (v1), T (v2), · · ·T (v512)}, where the number of vi is arranged as
follows: we assign value to the q1, q2, q3, according to firstly ∅, secondly {a}, {b}, {c},
again {a, b}, {a, c}, {b, c}, finally Ω.

For example, v1(q1) = ∅, v1(q2) = ∅, v1(q3) = ∅; v2(q1) = ∅, v2(q2) = ∅, v2(q3) =
{a}; v3(q1) = ∅, v3(q2) = ∅, v3(q3) = {b}; · · · ; v512(q1) = Ω, v512(q2) = Ω, v512(q3) =
Ω. Suppose that there is a probability distribution Pton TΨ∪{A}:Pt(T (vi)) = α( 1

2 )i−1,

where α = 1
2(1−( 1

2 )512)
≈ 1

2 .

Since q1 ∨ q2 → (q1 ∨ q3 → q1) is not a theorem, q1 /∈ D(Ψ). Note that(q1 ∨ q2) ∧
(q2 ∨ q3) and q1 ∨ (q2 ∧ q3) are provable equivalence and (q1 ∨ q2)∧ (q2 ∨ q3) ∈ D(Ψ).
Hence q1 ∨ (q2 ∧ q3) ∈ D(Ψ), and

τ(q1 ∨ (q2 ∧ q3)→ q1) = τ(q2 ∧ q3 → q1) =

= τ(¬q2 ∨ ¬q3 ∨ q1) = 1− τ(¬q1 ∧ q2 ∧ q3) ,

and
τ(¬q1 ∧ q2 ∧ q3) =

∫
∑
p

(¬q1 ∧ q2 ∧ q3)(v) dµ =

=

512∑
i=1

P (vi(¬q1 ∧ q2 ∧ q3)Pt(T (vi)) = 0.0184 .

Thus, for ε = 0.02, there exists a formula q1 ∨ (q2 ∧ q3) ∈ D(Ψ) such thatτ(q1 ∨
(q2 ∧ q3)→ q1) > 1− ε. Therefore. A = q1 is a I-type conclusion of Ψ with error less
than 0.02.

Now we answer the approximate reasoning mentioned in Introduction.
At first, we symbolize the proposition in the reasoning.q1: John will live in War-

saw on Dec. 21 next year, q2: John will live in Athens on Dec. 21 next year, q3: John
will live in Vienna on Dec. 21 next year. Then premise set Ψ = {q1 ∨ q2, q1 ∨ q3},
conclusion B = q1. We assume that the probability of events "John will live in War-
saw on Dec. 21 next year (denote it by a)", "John will live in Athens on Dec. 21
next year (denote it by b)", "John will live in Vienna on Dec. 21 next year (denote
it by c)" are 0.5, 0.25, 0.25 respectively. By Example 6.4, A is a Γ conclusion in
probability truth with error less than 0.02. Hence, based on the current facts we can
approximatively reasoning that John will live in Warsaw on Dec. 21 next year, the
reasoning error being less than 0.02.
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7. Conclusion

This paper extend the classical two-valued proposition logic along the direction
of the randomization. By extending the value domain {0, 1} of propositional logic
to a probability space we establish probabilistic semantics of propositional logic, the
classical two-valued semantic of proposition logic is a special case of it. The concepts
of Λ-probabilistic truth degree and Λ-uncertainty degree are introduced, and some
properties of them are discussed. The conclusions show that Λ-uncertainty degree
satisfies Kolmogorov axioms. It is proved that the set of probabilistic truth degree
based on valuation set on independent events of all formulas has not isolated points
in [0,1] and the Λ-uncertainty degree of conclusion is less than or equal to the sum
of the product of Λ-uncertainty degree of every premise and its essentialness degree
in a formal reasoning. The Λ-similarity degree and probabilistic logic pseudo-metric
between formulas are introduced by using the Λ-uncertainty degree of formulas, and
it is proved that there are not isolated points in the probabilistic logic pseudo-metric
space. As an application, two different approximate reasoning models in the logic
pseudo-metric space are proposed, and some examples to illustrate the practical
application of these approximate reasoning models are given.
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